
Large Language Models - Technology
Status, Trends and Impacts

刘群 LIU Qun

华为诺亚方舟实验室 Huawei Noah’s Ark Lab

A Guest Talk to Hong Kong Metropolitan University

2024-03-07, Online

Trends of Large Languge Models: an high-level overview

Trends of technologies for improving LLM built-in abilities

Trends of technologies for improving LLM learned abilities

Challenges, risks and social impacts of LLMs

Summary

Content

Trends of Large Languge Models: an high-level overview

Trends of technologies for improving LLM built-in abilities

Trends of technologies for improving LLM learned abilities

Challenges, risks and social impacts of LLMs

Summary

Content

What are Large Language Models (LLMs)?

▶ Large Language Models (LLMs) are statistical language models with huge
number (normally more than 1 billion) of parameters.

▶ LLMs are originally language models but can be extended to multimodal
models which can process audio, image and video data.

▶ LLMs are also known as foundation models, although there are subtle
differences between them.

▶ Typical LLMs include GPT-3/3.5/4, ChatGPT, Claude, LLaMA, Gemini etc.

1 total: 23

Large Languege Models: an overview
▶ 2023 is the year of explosion of LLMs
▶ 2023 is also called the meta-year of AGI
▶ LLMs have had profoundly impacted AI
▶ LLMs will further profoundly impact our
society

7

2020

2023

2021
1-4

5-8

9-10

1-3

4-6

7-10

11-12

T5

GPT-3

WebGPT

BLOOMZ

Galatica

mT0 LLaMA

2019

FLAN

InstructGPT

GPT-NeoX-20B

CodeGen

OPT

OPT-IML

MT-NLG

T0

Tk-Instruct

1-6

GPT-4

GShard

UL2

PaLM Flan-T5

Flan-PaLM

Sparrow

ChatGPT

Ernie 3.0 Titan

Yuan 1.0

PanGu-Σ

Gopher

GLaM

mT5 PanGu-𝛂

PLUG

Bard

LaMDA
CPM-2

HyperCLOVA

Publicly Available

Codex

Jurassic-1

Ernie 3.0

Anthropic

NLLBCohere

Pythia

Vicuna

Luminous

YaLM

11-12

2022

GLM

AlexaTM

BLOOM

WeLM

AlphaCode

Chinchilla
CodeGeeX

Falcon

Fig. 2: A timeline of existing large language models (having a size larger than 10B) in recent years. The timeline was
established mainly according to the release date (e.g., the submission date to arXiv) of the technical paper for a model. If
there was not a corresponding paper, we set the date of a model as the earliest time of its public release or announcement.
We mark the LLMs with publicly available model checkpoints in yellow color. Due to the space limit of the figure, we only
include the LLMs with publicly reported evaluation results.

GPT-1
2018.06

decoder-only architecture
generative pre-training

GPT-2
2019.02

unsupervised multitask learner
scaling the model size

in-context learning
exploring scaling limits

code pre-training

gpt-3.5-turbo
2023.03

excellent comprehensive ability

text-davinci-002
2022.03

instruction following

code-davinci-002
2022.03

capable code model

+code

+chat+RLHF+instruction

Codex
2021.07

GPT-3
2020.05

GPT-4
2023.03

strong reasoning ability
multi-modal ability

GPT-3.5
2022.03

ChatGPTtext-davinci-003
2022.09

human alignment

Fig. 3: A brief illustration for the technical evolution of GPT-series models. We plot this figure mainly based on the papers,
blog articles and official APIs from OpenAI. Here, solid lines denote that there exists an explicit evidence (e.g., the official
statement that a new model is developed based on a base model) on the evolution path between two models, while dashed
lines denote a relatively weaker evolution relation.

developed two initial GPT models, namely GPT-1 [105] and
GPT-2 [26], which can considered as the foundation to more
powerful models subsequently i.e., GPT-3 and GPT-4.

• GPT-1. In 2017, the Transformer model [22] was intro-
duced by Google, and the OpenAI team quickly adapted
their language modeling work to this new neural network
architecture. They released the first GPT model in 2018,
i.e., GPT-1 [105], and coined the abbreviation term GPT
as the model name, standing for Generative Pre-Training.
GPT-1 was developed based on a generative, decoder-only
Transformer architecture, and adopted a hybrid approach of
unsupervised pretraining and supervised fine-tuning. GPT-

1 has set up the core architecture for the GPT-series models
and established the underlying principle to model natural
language text, i.e., predicting the next word.

• GPT-2. Following a similar architecture of GPT-1,
GPT-2 [26] increased the parameter scale to 1.5B, which
was trained with a large webpage dataset WebText. As
claimed in the paper of GPT-2, it sought to perform
tasks via unsupervised language modeling, without explicit
fine-tuning using labeled data. To motivate the approach,
they introduced a probabilistic form for multi-task solving,
i.e., p(output|input, task) (similar approaches have been
adopted in [106]), which predicts the output conditioned on

7

2020

2023

2021
1-4

5-8

9-10

1-3

4-6

7-10

11-12

T5

GPT-3

WebGPT

BLOOMZ

Galatica

mT0 LLaMA

2019

FLAN

InstructGPT

GPT-NeoX-20B

CodeGen

OPT

OPT-IML

MT-NLG

T0

Tk-Instruct

1-6

GPT-4

GShard

UL2

PaLM Flan-T5

Flan-PaLM

Sparrow

ChatGPT

Ernie 3.0 Titan

Yuan 1.0

PanGu-Σ

Gopher

GLaM

mT5 PanGu-𝛂

PLUG

Bard

LaMDA
CPM-2

HyperCLOVA

Publicly Available

Codex

Jurassic-1

Ernie 3.0

Anthropic

NLLBCohere

Pythia

Vicuna

Luminous

YaLM

11-12

2022

GLM

AlexaTM

BLOOM

WeLM

AlphaCode

Chinchilla
CodeGeeX

Falcon

Fig. 2: A timeline of existing large language models (having a size larger than 10B) in recent years. The timeline was
established mainly according to the release date (e.g., the submission date to arXiv) of the technical paper for a model. If
there was not a corresponding paper, we set the date of a model as the earliest time of its public release or announcement.
We mark the LLMs with publicly available model checkpoints in yellow color. Due to the space limit of the figure, we only
include the LLMs with publicly reported evaluation results.

GPT-1
2018.06

decoder-only architecture
generative pre-training

GPT-2
2019.02

unsupervised multitask learner
scaling the model size

in-context learning
exploring scaling limits

code pre-training

gpt-3.5-turbo
2023.03

excellent comprehensive ability

text-davinci-002
2022.03

instruction following

code-davinci-002
2022.03

capable code model

+code

+chat+RLHF+instruction

Codex
2021.07

GPT-3
2020.05

GPT-4
2023.03

strong reasoning ability
multi-modal ability

GPT-3.5
2022.03

ChatGPTtext-davinci-003
2022.09

human alignment

Fig. 3: A brief illustration for the technical evolution of GPT-series models. We plot this figure mainly based on the papers,
blog articles and official APIs from OpenAI. Here, solid lines denote that there exists an explicit evidence (e.g., the official
statement that a new model is developed based on a base model) on the evolution path between two models, while dashed
lines denote a relatively weaker evolution relation.

developed two initial GPT models, namely GPT-1 [105] and
GPT-2 [26], which can considered as the foundation to more
powerful models subsequently i.e., GPT-3 and GPT-4.

• GPT-1. In 2017, the Transformer model [22] was intro-
duced by Google, and the OpenAI team quickly adapted
their language modeling work to this new neural network
architecture. They released the first GPT model in 2018,
i.e., GPT-1 [105], and coined the abbreviation term GPT
as the model name, standing for Generative Pre-Training.
GPT-1 was developed based on a generative, decoder-only
Transformer architecture, and adopted a hybrid approach of
unsupervised pretraining and supervised fine-tuning. GPT-

1 has set up the core architecture for the GPT-series models
and established the underlying principle to model natural
language text, i.e., predicting the next word.

• GPT-2. Following a similar architecture of GPT-1,
GPT-2 [26] increased the parameter scale to 1.5B, which
was trained with a large webpage dataset WebText. As
claimed in the paper of GPT-2, it sought to perform
tasks via unsupervised language modeling, without explicit
fine-tuning using labeled data. To motivate the approach,
they introduced a probabilistic form for multi-task solving,
i.e., p(output|input, task) (similar approaches have been
adopted in [106]), which predicts the output conditioned on

10

LLaMA

BenTsao

Baize

Koala

Ziya

BELLE

LLaMA
Adapter

Guanaco

Alpaca
Lora

Lawyer
LLaMA

+ chat data

+ task data

LLaVA

InstructBLIP

Yulan-Chat

+ task data

Multimodal models

+ task data

Data inheritance

Model inheritance

Vicuna

Alpaca
Panda

PandaGPT

Cornucopia

Chinese
LLaMA

TaoLi

+ chat data

+ chat data

+ task data

Chinese
Alpaca

ChatMed

+ synthetic data

Chinese
Vicuna

Linly-Chinese-LLaMA

Open-Chinese-LLaMA

+ task data

LAWGPT

RLHF

PKU-Beaver

Chatbridge

OpenFlamingo

VisionLLM

MiniGPT-4

Goat

QiZhenGPT

+ chat data

BiLLa

+ task data

Math Finance

Continue pre-training

Instruction
tuning

Law Bilingualism EducationMedicine

Parameter-efficient fine-tuning

Full parameter fine-tuning

+ chinese data

+ synthetic data

+ Alpaca data

Fig. 4: An evolutionary graph of the research work conducted on LLaMA. Due to the huge number, we cannot include all
the LLaMA variants in this figure, even much excellent work. To support incremental update, we share the source file of
this figure, and welcome the readers to include the desired models by submitting the pull requests on our GitHub page.

parameters. As a popular LLM, LLaMA (65B version) [57],
which contains approximately five times as many parame-
ters as other models, has exhibited superior performance in
tasks related to instruction following. Due to the openness
and effectiveness, LLaMA has attracted significant attention
from the research community, and many efforts [119–122]
have been devoted to fine-tuning or continually pre-training
its different model versions for implementing new models
or tools. More recently, Falcon [117], as another open-
source LLM, has also achieved very excellent performance
on open benchmarks. It is featured by a more careful data
cleaning process to prepare the pre-training data (with a
publicly shared dataset RefinedWeb [123]). Typically, pre-
training models at this scale require hundreds or even
thousands of GPUs or TPUs. For instance, GPT-NeoX-20B
uses 12 supermicro servers, each equipped with 8 NVIDIA
A100-SXM4-40GB GPUs, while LLaMA utilizes 2,048 A100-
80G GPUs as reported in their original publications. To
accurately estimate the computation resources needed, it
is suggested to use the metrics measuring the number of
involved computations such as FLOPS (i.e., FLoating point
number Operations Per Second) [30].

Models with Hundreds of Billions of Parameters. For
models in this category, only a handful of models have been
publicly released. For example, OPT [81], OPT-IML [85],
BLOOM [69], and BLOOMZ [84] have nearly the same num-
ber of parameters as GPT-3 (175B version), while GLM [83]

and Galactica [35] have 130B and 120B parameters, re-
spectively. Among them, OPT (175B version), with the
instruction-tuned version OPT-IML, has been specially mo-
tivated for open sharing, which aims to enable researchers
to carry out reproducible research at scale. For research
in cross-lingual generalization, BLOOM (176B version) and
BLOOMZ (176B version) can be used as base models, due to
the competence in multilingual language modeling tasks.
As a bilingual LLM, GLM has also provided a popular
small-sized Chinese chat model ChatGLM2-6B (a updated
version for ChatGLM-6B), which is featured with many
improvements in efficiency and capacity (e.g., quantization,
32K-length context, fast inference rate). Models of this scale
typically require thousands of GPUs or TPUs to train. For
instance, OPT (175B version) used 992 A100-80GB GPUs,
while GLM (130B version) used a cluster of 96 NVIDIA
DGX-A100 (8x40G) GPU nodes.

LLaMA Model Family. The collection of LLaMA mod-
els [57] were introduced by Meta AI in February, 2023,
consisting of four sizes (7B, 13B, 30B and 65B). Since
released, LLaMA has attracted extensive attention from
both research and industry communities. LLaMA mod-
els have achieved very excellent performance on various
open benchmarks, which have become the most popu-
lar open language models thus far. A large number of
researchers have extended LLaMA models by either in-
struction tuning or continual pretraining. In particular, in-

Zhao, et al. “A Survey of Large Language Models.” arXiv2303.18223

2 total: 23

Emergence and homogenization of foundation models
The significance of foundation models can be summarized with two words: emergence and homogenization.

▶ Emergence means that the behavior of a system is implicitly induced rather than explicitly constructed; it is
both the source of scientific excitement and anxiety about unanticipated consequences.

▶ Homogenization indicates the consolidation of methodologies for building machine learning systems
across a wide range of applications; it provides strong leverage towards many tasks but also creates single
points of failure.

On the Opportunities and Risks of Foundation Models 3

1 INTRODUCTION
This report investigates an emerging paradigm for building artificial intelligence (AI) systems
based on a general class of models which we term foundation models.2 A foundation model is any
model that is trained on broad data at scale and can be adapted (e.g., fine-tuned) to a wide range of
downstream tasks; current examples include BERT [Devlin et al. 2019], GPT-3 [Brown et al. 2020],
and CLIP [Radford et al. 2021]. From a technological point of view, foundation models are not
new — they are based on deep neural networks and self-supervised learning, both of which have
existed for decades. However, the sheer scale and scope of foundation models over the last few years
have stretched our imagination of what is possible; for example, GPT-3 has 175 billion parameters
and can be adapted via natural language prompts to do a passable job on a wide range of tasks
despite not being trained explicitly to do many of those tasks [Brown et al. 2020]. At the same time,
existing foundation models have the potential to accentuate harms, and their characteristics are in
general poorly understood. Given their impending widespread deployment, they have become a
topic of intense scrutiny [Bender et al. 2021].

1.1 Emergence and homogenization
The significance of foundation models can be summarized with two words: emergence and ho-
mogenization. Emergence means that the behavior of a system is implicitly induced rather than
explicitly constructed; it is both the source of scientific excitement and anxiety about unanticipated
consequences. Homogenization indicates the consolidation of methodologies for building machine
learning systems across a wide range of applications; it provides strong leverage towards many
tasks but also creates single points of failure. To better appreciate emergence and homogenization,
let us reflect on their rise in AI research over the last 30 years.

Fig. 1. The story of AI has been one of increasing emergence and homogenization. With the introduction of

machine learning, how a task is performed emerges (is inferred automatically) from examples; with deep

learning, the high-level features used for prediction emerge; and with foundation models, even advanced

functionalities such as in-context learning emerge. At the same time, machine learning homogenizes learning

algorithms (e.g., logistic regression), deep learning homogenizes model architectures (e.g., Convolutional

Neural Networks), and foundation models homogenizes the model itself (e.g., GPT-3).

Machine learning. Most AI systems today are powered by machine learning, where predictive
models are trained on historical data and used to make future predictions. The rise of machine
learning within AI started in the 1990s, representing a marked shift from the way AI systems were
built previously: rather than specifying how to solve a task, a learning algorithm would induce
it based on data — i.e., the how emerges from the dynamics of learning. Machine learning also

2We chose the term foundation models to capture the unfinished yet important status of these models — see §1.1.1: naming
for further discussion of the name.

Machine Learning Deep Learning Foundation Models
Emergence how a task is performed the high-level features used

for prediction
advanced functionalities
such as in-context learning

Homogenization learning algorithms
(e.g., logistic regression)

model architectures
(e.g., Convolutional NNs)

the model itself
(e.g., GPT-3)

Bommasani et al., On the Opportunities and Risks of Foundation Models, arXiv:2108.07258 [cs.LG]

3 total: 23

Homogenization: Pre-trained LMs vs. LLMs
Pre-trained Language Models
(PLMs)

Large Language Models
(LLMs)

Typical Models ELMo, BERT, GPT GPT-2, GPT-3

Model Architectures
BiLSTM, Transformer Transformer
Encoder, Encoder-decoder,
Decoder

Decoder

Attention
Directions Bidirectional、Unidirectional Unidirectional

Training Methods Mask & Predict
Autoregressive Generation

Autoregressive Generation

Task Types NLU NLU & NLG
Model Sizes 0.1-1B parameters 1Billion-xTrillion parameters
Applying Methods Fine-tuning Prompting & Fine-tuning & RLHF

Emergent Abilities Inductive Transfer Learning Zero-shot Learning
Few-shot/In-context Learning
Chain-of-Thought

4 total: 23

Ability emergence in LLMs
In-context Learning (zero/few shot learning)

Emergence of in-context learning Emergence of other abilities

1018 1020 1022 1024

0

10

20

30

40

50

A
cc

ur
ac

y
(%

)

(A) Mod. arithmetic

1018 1020 1022 1024

0

10

20

30

40

50

B
L

E
U

(%
)

(B) IPA transliterate

1018 1020 1022 1024

0

10

20

30

40

50

E
xa

ct
m

at
ch

(%
)

(C) Word unscramble

LaMDA GPT-3 Gopher Chinchilla PaLM Random

1018 1020 1022 1024

0

10

20

30

40

50

E
xa

ct
m

at
ch

(%
)

(D) Figure of speech

1020 1022 1024
0

10

20

30

40

50

60

70

A
cc

ur
ac

y
(%

)

(E) TruthfulQA

1020 1022 1024
0

10

20

30

40

50

60

70

Model scale (training FLOPs)

A
cc

ur
ac

y
(%

)

(F) Grounded mappings

1020 1022 1024
0

10

20

30

40

50

60

70

A
cc

ur
ac

y
(%

)

(G) Multi-task NLU

1020 1022 1024
0

10

20

30

40

50

60

70

A
cc

ur
ac

y
(%

)

(H) Word in context

Figure 2: Eight examples of emergence in the few-shot prompting setting. Each point is a separate model. The
ability to perform a task via few-shot prompting is emergent when a language model achieves random performance
until a certain scale, after which performance significantly increases to well-above random. Note that models
that used more training compute also typically have more parameters—hence, we show an analogous figure with
number of model parameters instead of training FLOPs as the x-axis in Figure 7. A–D: BIG-Bench (2022), 2-shot.
E: Lin et al. (2021) and Rae et al. (2021). F: Patel and Pavlick (2022). G: Hendrycks et al. (2021), Rae et al. (2021),
and Hoffmann et al. (2022). H: Brown et al. (2020), Hoffmann et al. (2022), and Chowdhery et al. (2022) on the
WiC benchmark (Pilehvar and Camacho-Collados, 2019).

The ability to perform a task via few-shot prompt-
ing is emergent when a model has random per-
formance until a certain scale, after which perfor-
mance increases to well-above random. Figure 2
shows eight such emergent abilities spanning five
language model families from various work.

BIG-Bench. Figure 2A–D depicts four emergent
few-shot prompted tasks from BIG-Bench, a crowd-
sourced suite of over 200 benchmarks for language
model evaluation (BIG-Bench, 2022). Figure 2A
shows an arithmetic benchmark that tests 3-digit
addition and subtraction, as well as 2-digit multi-
plication. GPT-3 and LaMDA (Thoppilan et al.,
2022) have close-to-zero performance for several
orders of magnitude of training compute, before
performance jumps to sharply above random at
2 · 1022 training FLOPs (13B parameters) for GPT-
3, and 1023 training FLOPs (68B parameters) for

LaMDA. Similar emergent behavior also occurs at
around the same model scale for other tasks, such
as transliterating from the International Phonetic
Alphabet (Figure 2B), recovering a word from its
scrambled letters (Figure 2C), and detecting fig-
ures of speech (Figure 2D). Even more emergent
abilities from BIG-Bench are given in Table 1.

TruthfulQA. Figure 2E shows few-shot prompted
performance on the TruthfulQA benchmark, which
measures the ability to answer questions truthfully
(Lin et al., 2021). This benchmark is adversari-
ally curated against GPT-3 models, which do not
perform above random, even when scaled to the
largest model size. Small Gopher models also do
not perform above random until scaled up to the
largest model of 5 · 1023 training FLOPs (280B
parameters), for which performance jumps to more
than 20% above random (Rae et al., 2021).

Grounded conceptual mappings. Figure 2F
shows the task of grounded conceptual mappings,
where language models must learn to map a con-
ceptual domain, such as a cardinal direction, rep-
resented in a textual grid world (Patel and Pavlick,
2022). Again, performance only jumps to above
random using the largest GPT-3 model.

Multi-task language understanding. Figure 2G
shows the Massive Multi-task Language Under-
standing (MMLU) benchmark, which aggregates
57 tests covering a range of topics including math,
history, law, and more (Hendrycks et al., 2021). For
GPT-3, Gopher, and Chinchilla, models of ∼1022

training FLOPs (∼10B parameters) or smaller do
not perform better than guessing on average over all
the topics, scaling up to 3–5 ·1023 training FLOPs
(70B–280B parameters) enables performance to
substantially surpass random. This result is strik-
ing because it could imply that the ability to solve
knowledge-based questions spanning a large col-
lection of topics might require scaling up past this
threshold (for dense language models without re-
trieval or access to external memory).

Word in Context. Finally, Figure 2H shows the
Word in Context (WiC) benchmark (Pilehvar and
Camacho-Collados, 2019), which is a semantic un-
derstanding benchmark. Notably, GPT-3 and Chin-
chilla fail to achieve one-shot performance of bet-
ter than random, even when scaled to their largest
model size of ∼5 · 1023 FLOPs. Although these re-
sults so far may suggest that scaling alone may not
enable models to solve WiC, above-random perfor-
mance eventually emerged when PaLM was scaled
to 2.5 · 1024 FLOPs (540B parameters), which was
much larger than GPT-3 and Chinchilla.

4 Augmented Prompting Strategies

Although few-shot prompting is perhaps currently
the most common way of interacting with large
language models, recent work has proposed several
other prompting and finetuning strategies to further
augment the abilities of language models. If a tech-
nique shows no improvement or is harmful when
compared to the baseline of not using the technique
until applied to a model of a large-enough scale,
we also consider the technique an emergent ability.

Multi-step reasoning. Reasoning tasks, especially
those involving multiple steps, have been chal-
lenging for language models and NLP models
more broadly (Rae et al., 2021; Bommasani et al.,

1021 1022 1023 1024
0

5

10

15

20

25

No chain
of thought

Chain of
thought

G
SM

8K
A

cc
ur

ac
y

(%
)

(A) Math word
problems

1021 1022 1023 1024
30

40

50

60

70

No
instruction

tuning

Instruction
tuning

10
N

L
U

ta
sk

av
er

ag
e

(B) Instruction
following

1019 1020 1021
0

20

40

60

80

100

No
scratchpad

Scratchpad

Model scale (training FLOPs)

8-
di

gi
ta

dd
iti

on
(i

n-
do

m
ai

n)

(C) Arithmetic

1019 1020 1021
0

20

40

60

80

100

No
scratchpad

Scratchpad

9-
di

gi
ta

dd
iti

on
(O

O
D

)

(D) Arithmetic

Figure 3: Specialized prompting or finetuning methods
can be emergent in that they do not have a positive ef-
fect until a certain model scale. A: Wei et al. (2022b).
B: Wei et al. (2022a). C & D: Nye et al. (2021). An
analogous figure with number of parameters on the x-
axis instead of training FLOPs is given in Figure 8. The
model shown here is LaMDA (Thoppilan et al., 2022).

2021; Nye et al., 2021). A recent prompting strat-
egy called chain-of-thought prompting enables lan-
guage models to solve such problems by guiding
them to produce a sequence of intermediate steps
before giving the final answer (Cobbe et al., 2021;
Wei et al., 2022b; Zhou et al., 2022). As shown in
Figure 3A, chain of thought prompting only sur-
passes standard prompting without intermediate
steps when scaled to 1023 training FLOPs (∼100B
parameters). A similar emergence in performance
gain was also observed when augmenting few-shot
prompting with explanations that came after the
final answer (Lampinen et al., 2022).

Instruction following. Another growing line of
work aims to better enable language models to
perform new tasks simply by reading instructions
describing the task (without few-shot exemplars).
By finetuning on a mixture of tasks phrased as in-
structions, language models have been shown to
respond appropriately to instructions describing an
unseen task (Ouyang et al., 2022; Wei et al., 2022a;

5 total: 23

LLM training: the Scaling Law

Dataset Size
tokens

Parameters
non-embedding

Compute
PF-days, non-embedding

Te
st

 L
os

s

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute2 used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.

Performance depends strongly on scale, weakly on model shape: Model performance depends most
strongly on scale, which consists of three factors: the number of model parameters N (excluding embed-
dings), the size of the dataset D, and the amount of compute C used for training. Within reasonable limits,
performance depends very weakly on other architectural hyperparameters such as depth vs. width. (Section
3)

Smooth power laws: Performance has a power-law relationship with each of the three scale factors
N,D,C when not bottlenecked by the other two, with trends spanning more than six orders of magnitude
(see Figure 1). We observe no signs of deviation from these trends on the upper end, though performance
must flatten out eventually before reaching zero loss. (Section 3)

Universality of overfitting: Performance improves predictably as long as we scale up N and D in tandem,
but enters a regime of diminishing returns if either N or D is held fixed while the other increases. The
performance penalty depends predictably on the ratio N0.74/D, meaning that every time we increase the
model size 8x, we only need to increase the data by roughly 5x to avoid a penalty. (Section 4)

Universality of training: Training curves follow predictable power-laws whose parameters are roughly
independent of the model size. By extrapolating the early part of a training curve, we can roughly predict the
loss that would be achieved if we trained for much longer. (Section 5)

Transfer improves with test performance: When we evaluate models on text with a different distribution
than they were trained on, the results are strongly correlated to those on the training validation set with
a roughly constant offset in the loss – in other words, transfer to a different distribution incurs a constant
penalty but otherwise improves roughly in line with performance on the training set. (Section 3.2.2)

Sample efficiency: Large models are more sample-efficient than small models, reaching the same level of
performance with fewer optimization steps (Figure 2) and using fewer data points (Figure 4).

Convergence is inefficient: When working within a fixed compute budget C but without any other restric-
tions on the model size N or available data D, we attain optimal performance by training very large models
and stopping significantly short of convergence (see Figure 3). Maximally compute-efficient training would
therefore be far more sample efficient than one might expect based on training small models to convergence,
with data requirements growing very slowly as D ∼ C0.27 with training compute. (Section 6)

Optimal batch size: The ideal batch size for training these models is roughly a power of the loss only,
and continues to be determinable by measuring the gradient noise scale [MKAT18]; it is roughly 1-2 million
tokens at convergence for the largest models we can train. (Section 5.1)

Taken together, these results show that language modeling performance improves smoothly and predictably
as we appropriately scale up model size, data, and compute. We expect that larger language models will
perform better and be more sample efficient than current models.

3

Kaplan et al. “Scaling Laws for Neural Language Models.” 2000.

1017 1018 1019 1020 1021 1022

FLOPS

2.0

2.5

3.0

3.5
4.0
4.5
5.0
5.5
6.0

Tr
ai

ni
ng

 lo
ss

75M

250M
500M
1B

2.5B
5B
10B

1017 1019 1021 1023 1025

FLOPs

109

1010

1011

1012

To
ke

ns

1.5T

1017 1019 1021 1023 1025

FLOPs

100M

1.0B

10B

100B

1T

Pa
ra

m
et

er
s

67B

Figure 2 | Training curve envelope. On the left we show all of our different runs. We launched a
range of model sizes going from 70M to 10B, each for four different cosine cycle lengths. From these
curves, we extracted the envelope of minimal loss per FLOP, and we used these points to estimate the
optimal model size (center) for a given compute budget and the optimal number of training tokens
(right). In green, we show projections of optimal model size and training token count based on the
number of FLOPs used to train Gopher (5.76 × 1023).

3.1. Approach 1: Fix model sizes and vary number of training tokens

In our first approach we vary the number of training steps for a fixed family of models (ranging from
70M to over 10B parameters), training each model for 4 different number of training sequences.
From these runs, we are able to directly extract an estimate of the minimum loss achieved for a given
number of training FLOPs. Training details for this approach can be found in Appendix D.

For each parameter count 𝑁 we train 4 different models, decaying the learning rate by a factor of
10× over a horizon (measured in number of training tokens) that ranges by a factor of 16×. Then, for
each run, we smooth and then interpolate the training loss curve. From this, we obtain a continuous
mapping from FLOP count to training loss for each run. Then, for each FLOP count, we determine
which run achieves the lowest loss. Using these interpolants, we obtain a mapping from any FLOP
count 𝐶, to the most efficient choice of model size 𝑁 and number of training tokens 𝐷 such that
FLOPs(𝑁, 𝐷) = 𝐶.4 At 1500 logarithmically spaced FLOP values, we find which model size achieves the
lowest loss of all models along with the required number of training tokens. Finally, we fit power laws
to estimate the optimal model size and number of training tokens for any given amount of compute
(see the center and right panels of Figure 2), obtaining a relationship 𝑁𝑜𝑝𝑡 ∝ 𝐶𝑎 and 𝐷𝑜𝑝𝑡 ∝ 𝐶𝑏. We
find that 𝑎 = 0.50 and 𝑏 = 0.50—as summarized in Table 2. In Section D.4, we show a head-to-head
comparison at 1021 FLOPs, using the model size recommended by our analysis and by the analysis of
Kaplan et al. (2020)—using the model size we predict has a clear advantage.

3.2. Approach 2: IsoFLOP profiles

In our second approach we vary the model size5 for a fixed set of 9 different training FLOP counts6
(ranging from 6 × 1018 to 3 × 1021 FLOPs), and consider the final training loss for each point7. in
contrast with Approach 1 that considered points (𝑁, 𝐷, 𝐿) along the entire training runs. This allows
us to directly answer the question: For a given FLOP budget, what is the optimal parameter count?

4Note that all selected points are within the last 15% of training. This suggests that when training a model over 𝐷 tokens,
we should pick a cosine cycle length that decays 10× over approximately 𝐷 tokens—see further details in Appendix B.

5In approach 2, model size varies up to 16B as opposed to approach 1 where we only used models up to 10B.
6The number of training tokens is determined by the model size and training FLOPs.
7We set the cosine schedule length to match the number of tokens, which is optimal according to the analysis presented

in Appendix B.

5

Hoffmann et al. “Training Compute-Optimal Large Language Models.” 2022.

▶ The Scaling Law predicts that the performance of
LLMs will increase along with the increasing of the
model size, the training data amount, as well as
the consumption of computing power in training.

▶ This encourage the industries to consistently
persue larger models and more training data, to
obtain a more powerful AI.

▶ It is estimated that when the number of
parameters of LLMs reaches 100 trillion, which is
comparible with the number of synapses of
human brains, the AGI will achieved.

6 total: 23

LLM abilities: a classification

Bulit-in Abilities

Abilities built-in and limited by hardware specifications, hardware
performance, and the model architecture

Analogy to the innate abilities of human beings, obtained through
hundreds of millions of years of biological evolution

▶ Sparse(MoE) or dense, number of experts
▶ Total Parameter Number, number of attention heads
▶ Model Width (Dimension of the representative vectors)
▶ Model Depth (Number of layers of the Transformer model)
▶ Computing power consumption in training (FLOPS)
▶ Sequence length, vocabulary size
▶ Training parallism, training loss, training speed
▶ Inference parallism, inference speed (delay)

Learned Abilities

Abilities obtained through data training, fine-tuning, and applica-
tion given a specific model

Analogy to acquired human abilities, i.e., abilities learned through
education and from the society

▶ Quality and quantity of the tranining data
▶ Language abilities, knowledge abilities
▶ In-context learning abilities, instruction-following abilities
▶ Math abilities, coding abilities, tools-using abilities
▶ Reasonging abilities, planning abilities
▶ Memorization abilities, learning abilities
▶ Multi-modal abilities
▶ Action abilities

7 total: 23

Trends of Large Languge Models: an high-level overview

Trends of technologies for improving LLM built-in abilities

Trends of technologies for improving LLM learned abilities

Challenges, risks and social impacts of LLMs

Summary

Content

Overview of technologies for improving LLM built-in abilities
▶ Improvement of tokenizer
▶ Improvement of attention mechanism

▶ Sparse attention: SparseTransformer, BigBird, LocalAttention, ...
▶ Linear attention: Performer, RWKV, RetNet
▶ Space state models: Mamba
▶ Memory usage optimization: FlashAttention
▶ Novel positional encoding: RoPE

▶ Improvement of FFNs
▶ Sparse FFN: MoE
▶ Replacing calculation with retrieval: LookupFFN

▶ Non-transformer Models: Diffusison models
▶ Training improvement: parallism, efficient optimizer, quantization,

heterogenerious training, incremental training
▶ Inference improvement: seperated deployment, parameter quantization, KV

cache quantization, speculative decoding

8 total: 23

Sparse FFNs: support larger models with the same computing power

▶ Challenge: all the parameters are activated at each step of inference, which is too expensive.
▶ Solution: Mixture-of-Experts (MoE): the internal nodes of FFN are grouped into experts, while

only part of groups are activated at each time.

Switch Transformers. 2021.01

Switch Transformers

Router

FFN 1 FFN 2 FFN 4FFN 3

Add + Normalize

FFN 1 FFN 2 FFN 4FFN 3

Router

Self-Attention

Add + Normalize

x1 x2

y1 y2

p = 0.65 p = 0.8

Positional
embedding

Positional
embedding

Add + Normalize

Self-Attention

Add + Normalize

Switching FFN Layer

y

x

More Parameters

Figure 2: Illustration of a Switch Transformer encoder block. We replace the dense feed
forward network (FFN) layer present in the Transformer with a sparse Switch
FFN layer (light blue). The layer operates independently on the tokens in the
sequence. We diagram two tokens (x1 = “More” and x2 = “Parameters” below)
being routed (solid lines) across four FFN experts, where the router independently
routes each token. The switch FFN layer returns the output of the selected FFN
multiplied by the router gate value (dotted-line).

2.1 Simplifying Sparse Routing

Mixture of Expert Routing. Shazeer et al. (2017) proposed a natural language Mixture-
of-Experts (MoE) layer which takes as an input a token representation x and then routes
this to the best determined top-k experts, selected from a set {Ei(x)}Ni=1 of N experts.
The router variable Wr produces logits h(x) = Wr · x which are normalized via a softmax
distribution over the available N experts at that layer. The gate-value for expert i is given
by,

pi(x) =
eh(x)i

∑N
j eh(x)j

. (1)

The top-k gate values are selected for routing the token x. If T is the set of selected top-k
indices then the output computation of the layer is the linearly weighted combination of
each expert’s computation on the token by the gate value,

y =
∑

i∈T
pi(x)Ei(x). (2)

Switch Routing: Rethinking Mixture-of-Experts. Shazeer et al. (2017) conjec-
tured that routing to k > 1 experts was necessary in order to have non-trivial gradients to
the routing functions. The authors intuited that learning to route would not work without
the ability to compare at least two experts. Ramachandran and Le (2018) went further to

5

Pangu-ィ. 2023.03

高层(MOE)
语义细粒度

底层(稠密)
语义统一

模型Sigma架构：稠密 vs 稀疏MOE，用有限算力训练更大的模型

稀疏稠密统一架构（双轨）

• 高效扩展：从稠密层扩展稀疏专家，知识继承、容量扩增、加速收敛

• 融合架构：底层语义统一表征，高层语义细粒度表征

模块化分组稀疏

• 专家分组：稀疏专家分组设计，行业任务/领域数据模块强化

• 无损抽取行业子模型：行业子模型可无损抽取，低成本赋能千行百业

昇腾亲和设计(训练/推理计算量不变, 模型容量更大)

• 无Vector极简路由

• 芯片带宽亲和的Expert容量设计

• 稀疏异构激活计算：高效训练和推理

▶ According unofficially disclosed information, GPT-4 adopts an MoE architecture.
▶ Mistral AI released the source codes of its MoE model Mixtral 8x7B.
▶ It is expected that the MoE architecture will be popular in the futhure LLMs.

9 total: 23

RNN-like attentions: support longer context with the same memory size
▶ Challenge: Long sequence processing is crucial to complex problems. The inference time and

memory consumption of the attention layer of Transformer are proportional to the square of the
sequence length.

▶ Solution: Modify the attention mechanism to reduce the computing complexity.

Linear Attention (img source) Mamba(paper)

Project

Discretize

𝑥!

ℎ!"# ℎ!
𝑦!

𝐴

𝐶!𝐵!

Selection Mechanism

GPU
SRAM

GPU HBM

∆!

Selective State Space Model
with Hardware-aware State Expansion

Figure 1: (Overview.) Structured SSMs independently map each channel (e.g. D = 5) of an input x to output y through a higher
dimensional latent stateℎ (e.g.N = 4). Prior SSMs avoidmaterializing this large e�ective state (DN, times batch sizeB and sequence
length L) through clever alternate computation paths requiring time-invariance: the (∆,A,B,C) parameters are constant across
time. Our selection mechanism adds back input-dependent dynamics, which also requires a careful hardware-aware algorithm to
only materialize the expanded states in more e�cient levels of the GPU memory hierarchy.

2 State Space Models
Structured state space sequence models (S4) are a recent class of sequence models for deep learning that are
broadly related to RNNs, and CNNs, and classical state space models. They are inspired by a particular continuous
system (1) that maps a 1-dimensional function or sequence x(t) ∈ ℝ ↦ y(t) ∈ ℝ through an implicit latent state
ℎ(t) ∈ ℝN .

Concretely, S4 models are defined with four parameters (∆,A,B,C), which define a sequence-to-sequence trans-
formation in two stages.

ℎ′(t) = Aℎ(t) +Bx(t) (1a)
y(t) = Cℎ(t) (1b)

ℎt = Aℎt−1 +Bxt (2a)
yt = Cℎt (2b)

K = (CB,CAB,… ,CA
k
B,…) (3a)

y = x ∗ K (3b)

Discretization. The first stage transforms the “continuous parameters” (∆,A,B) to “discrete parameters” (A,B)
through fixed formulas A = fA(∆,A) and B = fB(∆,A,B), where the pair (fA, fB) is called a discretization rule.
Various rules can be used such as the zero-order hold (ZOH) defined in equation (4).

A = exp(∆A) B = (∆A)−1(exp(∆A) − I) ⋅ ∆B (4)

Discretization has deep connections to continuous-time systems which can endow them with additional properties
such as resolution invariance (Nguyen, Goel, et al. 2022) and automatically ensuring that the model is properly
normalized (Gu, Johnson, Timalsina, et al. 2023; Orvieto et al. 2023). It also has connections to gating mechanisms
of RNNs (Gu, Gulcehre, et al. 2020; Tallec and Ollivier 2018) which we will revisit in Section 3.5. However, from
a mechanical point of view discretization can simply be viewed as the first step of the computation graph in the
forward pass of an SSM. Alternate flavors of SSMs can bypass the discretization step and parameterize (A,B)
directly instead (Zhang et al. 2023), which may be easier to reason about.

Computation. After the parameters have been transformed from (∆,A,B,C) ↦ (A,B,C), the model can be
computed in two ways, either as a linear recurrence (2) or a global convolution (3).

3

▶ There are a lot of work in this direction, including recently released work like RWKV, RetNet,
Mamba, etc.

▶ These methods can reduce the computational complexity of the attention mechanism, and
some of them can also achieve good performance on smaller-scale models, but none of them
has been verified on larger (more than 10 billion parameters) models.

10 total: 23

https://github.com/lucidrains/linear-attention-transformer?tab=readme-ov-file
https://arxiv.org/ftp/arxiv/papers/2312/2312.00752.pdf

Training parallism
▶ Challenge: How to allocate model parameters and data among computing units during parallel

training to achieve the optimal training effect?
▶ Solution: Partition the computing units from multiple dimensions, such as data, model layers,

operators, and sequence length.
3D parallism (data, model, pipeline) sequence parallism

Micro Batch 1

Micro Batch 2

Layer 1

Layer 2

Layer 3 Device 3

Device 2

Device 1

(a) Pipeline parallelism

Layer 1 Part 1 Layer 1 Part 2

Layer 2 Part 1 Layer 2 Part 2

Device 1 Device 2

Micro Batch 1

Micro Batch 2

(b) Tensor parallelism

This

We

Micro Batch 1

Micro Batch 2
is

are

Layer 1

Layer 2

sequence

using

parallel

it

Layer 1

Layer 2

Device 1 Device 2

(c) Sequence parallelism (Ours)

Figure 1: The overall architecture of the proposed sequence parallelism and existing parallel approaches. For
sequence parallelism, Device 1 and Device 2 share the same trainable parameters.

the computation is pipelined across micro-batches,
pipelining schemes need to ensure that inputs use
consistent weight versions for both forward and
backward computation to ensure correct weight
update and model convergence (Narayanan et al.,
2021).

Tensor parallelism Different from pipeline par-
allelism which splits models by layer, tensor par-
allelism (i.e., Megatron) (Shoeybi et al., 2019))
introduces tensor splitting, where individual lay-
ers of the model are partitioned over multiple de-
vices. Similar to our sequence parallelism, ten-
sor parallelism is also designed for Transformer-
based models. Each Transformer layer includes
a self-attention block and a two-layer multi-layer
perceptron (MLP) block. The MLP block can be
formalized as:

Y = GeLU(XA), Z = Y B (2)

where GeLU is a non-linearity activation function,
X is the input data, Z and Y are the outputs. Ten-
sor parallelism splits the weight matrices A and B
along columns and rows respectively. Then, the
first and second GEMM in the MLP block above
can be written as:

[A] =
[
A1 A2

]
[
Y1 Y2

]
=

[
GeLU(XA1) GeLU(XA2)

]

[B] =

[
B1

B2

]

Z =
[
Z1 + Z2

]
=

[
Y1 Y2

] [B1

B2

]
(3)

At the second GEMM, Z1 and Z2 need to un-
dergo an all-reduce operation to give the final out-
put before the dropout layer in the Transformer
layer.

Similarly, Megatron splits the tensors in the self-
attention layer as well. For multi-head attention,
attention heads are split by column and allocated
equally to the devices. The linear layer after the

self-attention computation is split by row. An all-
reduce operation is needed at the linear layer out-
put to aggregate attention output from all devices.
Please refer to Megatron (Shoeybi et al., 2019) for
more details about tensor parallelism.

3 Sequence parallelism

We propose sequence parallelism for training Trans-
former with longer sequences. The overview of
sequence parallelism is shown in Figure 1c. Input
sequences are split into multiple chunks and the
sub-sequences are fed to different corresponding
devices. All devices are holding the same train-
able parameters but different sub-sequence input
chunks. We will introduce and analyze sequence
parallelism in detail below. We use the following
notation in this section: (1) B: batch size; (2) L:
sequence length; (3) H: hidden size of linear lay-
ers; (4) A: attention head size; (5) Z: number of
attention heads; (6) N: number of GPUs.

3.1 Ring self-Attention

To distribute sub-sequences to multiple devices,
the main challenge is calculating attention scores
across devices. Therefore, we propose Ring Self-
Attention (RSA) to compute attention output in a
distributed setting. There are two steps in RSA to
obtain the final output. Please note, we only con-
sider bidirectional self-attention here to introduce
RSA succinctly. We treat all heads equally so it
can be extended to multi-head attention directly.

Given query embeddings {q11, q12, ..., qNL }, key
embeddings {k11, k12, ..., kNL } and value embed-
dings {v11, v12, ..., vNL }, where qns represents the key
embedding of the sth token in the the sequence
which is on nth device. We define all key embed-
dings on nth device as Kn. In RSA, nth device
holds the corresponding query embeddings Qn, key
embeddings Kn and value embeddings V n. The
embeddings on nth device correspond to the nth

chunk whose sub-sequence length is L/N . Our

2393

▶ The development of parallel training methods makes it possible to train larger and larger
models.

▶ However the communication between computer units became the new bottleneck, and
manufacturers are producing large computing clusters, which support high-speed
communication between computer units inside a cluster.11 total: 23

Improvement of training optimizers

▶ Challenge: The commonly used Adam optimizer stores the first-order and second-order
moments of all parameters, which occupies twice the memory of the parameters.

▶ Solution: By matrix decomposition and parameter compensation based on confidence, the
memory usage are reduced by half without affecting the accuracy.

Adam & Adafactor Optimizer

训练内存约减：大模型专属优化器CAME，节约训练优化器内存占用量50%

𝑼𝒑𝒅𝒂𝒕𝒆 =
αG

V + ε

梯度一阶矩

梯度二阶矩

对优化器进行内存约简，会引入明显的精度损失

CAME：基于置信度对参数更新进行补偿，以
少量额外计算换内存，数学上具备近似性

常用高精度优化器会对每个参数引入2个变量

计算，千亿模型变量数高达2000亿，占用

800G内存。

关键技术
基于置信度调节机制的内存节约优化器CAME

结果：优化器静态内存占用量，相比

最常用的高精度优化器减少50%，精

度高于传统内存节约优化器。

ACL 2023 Outstanding Paper Awards

Adafactor: Low-rank matrix factorization
Precision decreased.

CAME Optimizer

训练内存约减：大模型专属优化器CAME，节约训练优化器内存占用量50%

𝑼𝒑𝒅𝒂𝒕𝒆 =
αG

V + ε

梯度一阶矩

梯度二阶矩

对优化器进行内存约简，会引入明显的精度损失

CAME：基于置信度对参数更新进行补偿，以
少量额外计算换内存，数学上具备近似性

常用高精度优化器会对每个参数引入2个变量

计算，千亿模型变量数高达2000亿，占用

800G内存。

关键技术
基于置信度调节机制的内存节约优化器CAME

结果：优化器静态内存占用量，相比

最常用的高精度优化器减少50%，精

度高于传统内存节约优化器。

ACL 2023 Outstanding Paper Awards

CAME: Adafactor + Parameter Compensation
Parameter Compensation based on confidience level.
Exchange memory with a little calculation.
Mathematical approximation.

ACL2023 Outstanding Paper Award!

Results

训练内存约减：大模型专属优化器CAME，节约训练优化器内存占用量50%

𝑼𝒑𝒅𝒂𝒕𝒆 =
αG

V + ε

梯度一阶矩

梯度二阶矩

对优化器进行内存约简，会引入明显的精度损失

CAME：基于置信度对参数更新进行补偿，以
少量额外计算换内存，数学上具备近似性

常用高精度优化器会对每个参数引入2个变量

计算，千亿模型变量数高达2000亿，占用

800G内存。

关键技术
基于置信度调节机制的内存节约优化器CAME

结果：优化器静态内存占用量，相比

最常用的高精度优化器减少50%，精

度高于传统内存节约优化器。

ACL 2023 Outstanding Paper Awards

12 total: 23

Improvement of inference
▶ Challenges of inference: large number of parameters, slow inference, high memory usage, and

high cost of end-to-end inference.
▶ Challenge 1: Existing quantization will cause severe accuracy deterioration.
▶ Challenge 2: High memory usage: 1) Parameters: 175B model -> 350GB memory

2) KV Cache: linear to seq.len. 175B model + 4K context -> 576GB memory
▶ Solution:

Low-bit quantization

高效推理：量化压缩和分离部署，内存降低1~4倍，吞吐提升100%

低比特权重量化 KV cache 量化

当前进展：4/8-bit权重量化算法QuantGPT+

昇腾亲和高效反量化算子：模型内存降低2-4

倍，推理加速15-30%，单卡可推380亿模型

。4/8-bit权重量化算法+昇腾亲和高效反量化算子

当前进展：kv cache 8-bit量化之后内存占用降

低1倍

大模型推理挑战：生成模型参数量大，推理慢，占用内存高，端到端推理成本高。

挑战一：生成模型直接使用典型的量化算法会导致严重的精度下降

挑战二：推理内存占用大：1）模型参数： 1750亿模型占用350GB内存；

2）kv cache：显存占用和序列长度n成正比，1750亿模型 4k长度占用576G

分离部署+动态batch

当前进展： 全量推理与增量推理分离部署，吞吐

提升100%。

动态batch：

• 解码完成的样本提前退出

• 及时补进新的样本

全量和增量分离部署:

• 全量推理：batch size=1改进时延

• 增量推理：大batch size提升吞吐

ACL 2022 Outstanding Paper Awards
▶ 4/8-bit QuantGPT
▶ Efficient dequantization operator
▶ 2-4x memory reduction
▶ Inference acceleration: 15-30%
▶ 38B model inference in a single card
ACL2022 Outstanding Paper Award!

KV Cache Quantization

高效推理：量化压缩和分离部署，内存降低1~4倍，吞吐提升100%

低比特权重量化 KV cache 量化

当前进展：4/8-bit权重量化算法QuantGPT+

昇腾亲和高效反量化算子：模型内存降低2-4

倍，推理加速15-30%，单卡可推380亿模型

。4/8-bit权重量化算法+昇腾亲和高效反量化算子

当前进展：kv cache 8-bit量化之后内存占用降

低1倍

大模型推理挑战：生成模型参数量大，推理慢，占用内存高，端到端推理成本高。

挑战一：生成模型直接使用典型的量化算法会导致严重的精度下降

挑战二：推理内存占用大：1）模型参数： 1750亿模型占用350GB内存；

2）kv cache：显存占用和序列长度n成正比，1750亿模型 4k长度占用576G

分离部署+动态batch

当前进展： 全量推理与增量推理分离部署，吞吐

提升100%。

动态batch：

• 解码完成的样本提前退出

• 及时补进新的样本

全量和增量分离部署:

• 全量推理：batch size=1改进时延

• 增量推理：大batch size提升吞吐

ACL 2022 Outstanding Paper Awards ▶ kv cache 8-bit quantization
▶ 1x memory reduction

Separate deployment+Dynamic batch

高效推理：量化压缩和分离部署，内存降低1~4倍，吞吐提升100%

低比特权重量化 KV cache 量化

当前进展：4/8-bit权重量化算法QuantGPT+

昇腾亲和高效反量化算子：模型内存降低2-4

倍，推理加速15-30%，单卡可推380亿模型

。4/8-bit权重量化算法+昇腾亲和高效反量化算子

当前进展：kv cache 8-bit量化之后内存占用降

低1倍

大模型推理挑战：生成模型参数量大，推理慢，占用内存高，端到端推理成本高。

挑战一：生成模型直接使用典型的量化算法会导致严重的精度下降

挑战二：推理内存占用大：1）模型参数： 1750亿模型占用350GB内存；

2）kv cache：显存占用和序列长度n成正比，1750亿模型 4k长度占用576G

分离部署+动态batch

当前进展： 全量推理与增量推理分离部署，吞吐

提升100%。

动态batch：

• 解码完成的样本提前退出

• 及时补进新的样本

全量和增量分离部署:

• 全量推理：batch size=1改进时延

• 增量推理：大batch size提升吞吐

ACL 2022 Outstanding Paper Awards

▶ Dynamic batch: replacing
completed samples with new
samples instantly

▶ Separate deployment of full
inference and incremental inference,
improving throughput by 100%

13 total: 23

Trends of Large Languge Models: an high-level overview

Trends of technologies for improving LLM built-in abilities

Trends of technologies for improving LLM learned abilities

Challenges, risks and social impacts of LLMs

Summary

Content

Overview of technologies for improving LLM learned abilities

▶ Pre-training: data cleaning, data proportioning, data safe-guarding
▶ Instruction tuning: Instructional data construction, curriculum design, and

persona segregation
▶ RL training: RLHF (PPO/DPO), RLAIF, self-improvement, super-alignment, Q*
▶ Retrieval-augmentation: WebGPT, RAG, vector database
▶ Tool using: Code Interpreter, plug-ins
▶ AI agent: Reasoning, planning, chain-of-thought, path exploration, experience

memorization, knowledge summarization
▶ Multi-agent: Collaboration, debate, teaching, social behavior
▶ Multi-modal: audio, image, 3D, video
▶ Behavior and interaction: embodied AI

14 total: 23

Elaborated Instruction Data

Chain of Hindsight, arXiv.2302.02676.

How to
explain neural
networks to a

child?

<

A

compared with B

How to explain neural networks to a child?Model Completion

A B
Rank by Human

Add Hindsight Feedback

GPT

B A neural network is
like a robot brain …

A Neural networks
are used in …

Bad: Good:A BHow to explain neural networks to a child?

A good answer is : B

A

How to explain neural networks to a child?

A bad answer is :

is less preferred

Figure 2: Chain of Hindsight (CoH) turns human preferences into rich and detailed feedback in
the form of comparisons. In the diagram, we explain this by showing that a question is being
prompted to GPT model. The model then generates a multitude of responses, which are subsequently
ranked according to human preferences(e.g., A is less preferred compared with B). Subsequently,
we construct CoH sequences by converting human preference into natural language feedback and
combine them with the model’s outputs. These constructed sequences are then employed in the
finetuning phase, aligning with the same objectives as in the pretraining phase.

extensive experiments to showcase the effectiveness of our method in comparison to existing baselines,
including state-of-the-art RLHF methods.

2 Chain of Hindsight

Our goal is to improve the performance of a Transformer-based language model by leveraging
human-rated data and feedback, and to achieve this, we propose a novel approach that goes beyond
conventional SFT methods and RLHF methods.

Turning all feedback into a sequence. Our approach aims to take into account all feedback and
instructions provided by humans. To achieve this, we present the model with a sequence of model
generations, along with corresponding feedback and explanations provided by humans. Our approach
uses a conventional Transformer model architecture that is causal and decoder-only, as proposed
in the work of [7, 46] on attention mechanisms. This means that at each timestep, the model can
only attend to the past timesteps and itself. Given a text represented by tokens x = [x1, · · · , xn],
the standard causal language modeling objective is defined to maximize the log likelihood of x

autoregressively: log p(x) = log
n∏

i=1

p(xi|x<i). In CoH, we construct x by combining multiple

model outputs with feedback which are then used for instruction finetuning. For instance, when a
model is prompted to explain neural networks to a child, it generates multiple responses to the prompt.
These responses are then combined together into a sequence and paired with feedback instructions
generated based on human ratings. An example is illustrated in Figure 2. During the training phase,
the model is presented with both positive and negative feedback denoted as ‘Bad’ and ‘Good’, and
the model is conditioned to predict outputs that better match the latter feedback such as ‘How to
explain neural networks to a 6 year old? Bad: {a bad answer} Good: {a good answer}.’. Furthermore,
our framework allows for the integration of natural language feedback, such as ‘How can you explain
neural networks to a 6-year-old? Bad: {a subpar answer} Good: {an excellent answer}’, which
provides additional task-specific guidance and context. By incorporating a wider range of diverse
positive and negative feedback, it further enhances the model’s performance. In this study, we opted
for templated feedback generated from ratings rather than open-ended feedback from humans in the
loop. The feedback type varies depending on the task, we list the the contextual natural language
feedback in Appendix B.

Natural language feedback examples

A good summary: {positive}, a worse summary: {negative}
You are a helpful assistant: {positive}, you are an unhelpful assistant: {negative}
A bad answer is {negative}, a good answer is {positive}

In theory, one could employ open-ended feedback from humans in the loop. However, for this study,
we chose to generate feedback using pre-determined templates based on ratings. During the inference

3

▶ With carefully curated instruction data, the model can
learn the subtle differences between languages.

▶ By systematically constructing course learning
instruction data, the model can learn complex logical
expressions.

WizardLM, arXiv.2304.12244.

struction data generated by real human users, OpenAI’s LLMs (e.g., InstructGPT [2] and ChatGPT 4)
have achieved great success. These open-domain instructions can fully unleash the unlimited potential
of LLMs [14–17] and enable them to perform more complex and diverse tasks. However, using
humans to create open-domain instruction datasets like OpenAI did will encounter the following
challenges. The whole annotating process is extremely expensive and time-consuming [18–21]. On
the other hand, the difficulty level distribution of human-created instructions is skewed towards being
easy or moderate, with fewer difficult ones (according to the difficulty statistics of ShareGPT [22]
from Figure 7a). Possible reasons for this are that the proportion of experts among annotators is low
and creating complex instructions demands a lot of mental effort. Human annotators are prone to
fatigue and cannot sustain high-intensity work to produce a sufficient proportion of high-difficulty
instructions [23–26]. Based on these issues, developing an automatic method that can mass-produce
open-domain instructions (especially the more difficult ones) at a relatively low cost becomes the key
to further advancing instruction-tuned language models [27–30].

1 + 1 = ?
What is the value of x,
if x^3 + 2x + 3=7?

If you have one apple and someone
gives you another banana, how
many fruits do you have?

In what situation does
1+1 not equal to 2?

How to prove 1 + 1 = 2 in
the Goldbach Conjecture?

1/(sqrt(2) + 4^2) = ? What is the speed of light in a vacuum?

How many times faster is light
than sound in a vacuum?

How is the speed of light in a
vacuum measured and defined?

Please fill in the table below with the approximate
values of the speed of light in each medium.

Medium Speed of light (km/s)

Air

Water

Glass

import math
import random

choose a random integer between 1 and 10
x = random.randint(1, 10)
1/(math.sqrt(x) + x^2) =?

The process of plant photosynthesis is commonly written as:
6CO2 + 6H2O → C6H12O6 + 6O2

Please explain the main role of chlorophyll in above formula.

Complicate Input (Formula) In-Breadth Evolving

Increase Reasoning

Complicate Input (Code)

ConcretizingAdd Constraints

Deepening

DeepeningIncrease Reasoning

Complicate Input (Table)

In-Breadth Evolving

Initial Instruction

Figure 1: Running Examples of Evol-Instruct.

In this work, we introduce Evol-Instruct, a novel method using LLMs instead of humans to automati-
cally mass-produce open-domain instructions of various difficulty levels, to improve the performance
of LLMs. Figure 1 shows the running examples of Evol-Instruct. Starting from a simple initial in-
struction “1+1=?”, our method randomly selects In-depth Evolving (blue direction line) or In-breadth
Evolving (red direction line) to upgrade the simple instruction to a more complex one or create a new
one (to increase diversity). The In-depth Evolving includes five types of operations: add constraints,
deepening, concretizing, increase reasoning steps, and complicate input. The In-breadth Evolving
is mutation, i.e., generating a completely new instruction based on the given instruction. These six

4https://chat.openai.com/

2

15 total: 23

Self-critique, self-correcting and self-improving of LLMs
Self-critique and self-correcting

Language
Model

Patient

Treatment

Diagnosis

Doctor

Critic
Model

Refine
Model

Output

Feedback

Human

Language Model

External Tools

External Metrics

External Knowledge

Supervised Learning

Reinforcement
Learning

In-Context Learning

Self-Training

Feedback-guided
Generation

Strategy

Learning

Generate-then-Rank

Post-hoc Revision

Input

Trained Model

Program Executor

Other Tools

Hallucination

Unfaithful Reasoning

Flawed Codes

Toxic Contents

Scalar Value

Natural Language

Figure 1: A conceptual framework for self-correcting LLMs with automated feedback. We identify three parties
involved in the prototypical correction pipeline that are analogous to a patient, doctor, and treatment in medicine,
respectively: a Language Model produces initial output, a Critic Model analyzes the output and provides feedback,
and a Refine Model provides treatment to either the output or the language model. We taxonomize existing works
using this conceptualization along five key aspects: the problem to be corrected, the source and format of the
feedback, and the strategy and learning method of the refine model.

feedback can be multifaceted, spanning from the
LLM itself acting as the feedback model (Madaan
et al., 2023; Schick et al., 2023), a separately
trained feedback model (Yang et al., 2022b; Paul
et al., 2023), readily available external tools (Gou
et al., 2023; Chen et al., 2023d), to external knowl-
edge sources such as Wikipedia or the internet (Yu
et al., 2023; Li et al., 2023b). Different strategies
have been proposed to correct LLM with automated
feedback, including self-training (Huang et al.,
2022; Bai et al., 2022b), generate-then-rank (He
et al., 2023; Weng et al., 2023), feedback-guided
decoding (Yang et al., 2022a; Xie et al., 2023), iter-
ative post-hoc revision (Zhang et al., 2023a; Jiang
et al., 2023), etc. Recently, the incorporation of
such strategies has demonstrated their effectiveness
across a myriad of tasks, from question answer-
ing (Peng et al., 2023) and reasoning (Pan et al.,
2023) to code generation (Zhang et al., 2023b) and
toxicity detection (Lu et al., 2022).

In light of these advancements, our paper aims
to provide a comprehensive survey. We start by
establishing the concept of self-correcting LLMs
with automated feedback and creating a taxonomy
of the different methods (§ 2). We then discuss
the major techniques, categorized as training-time
correction (§ 3), generation-time correction (§ 4),
and post-hoc correction (§ 5). We then summarize
the major application areas of this strategy (§ 6).
Finally, we discuss key future directions (§ 7).

2 A Taxonomy for Correcting LLMs with
Automated Feedback

For the sake of clean exposition, we first present a
conceptual framework outlining the overall process
of correcting LLMs with feedback, thereby estab-
lishing the scope of this survey (§ 2.1). We then
proceed to identify five primary dimensions that
serve as classification criteria for existing works:
1) What gets corrected, 2) What is the source of the
feedback, 3) What is the format of the feedback, 4)
When the feedback is used, and 5) How to correct
the model with feedback (§ 2.2–§ 2.6). Finally, we
summarize existing works in § 2.7.

2.1 Conceptual Framework

We formulate the general process of correcting
LLMs with automated feedback in Figure 1, us-
ing an analogy of medical treatment in our daily
life. Three parties are involved in this process:

• Language Model (Patient). A language model
M : X → Y performs a specific task by mapping
an input x ∈ X to an output text ŷ ∈ Y . This for-
mulation encompasses a wide range of NLP tasks,
for example, in summarization, x is a passage, ŷ
is the generated summary; for question-answering,
x is a question and ŷ is the predicted answer. The
initial generation ŷ may be imperfect and suffer
from various problems such as hallucination and
incorrect reasoning.

2

▶ With appropriate fine-tuning, the model can learn
multi-dimensional self-evaluation.

▶ By using self-evaluation, the model can improve the
results it generates and generate better results.

▶ By using self-evaluation and self-correction, a large
amount of data can be automatically generated, and the
model performance can be further improved by using
this data for fine tuning.

▶ Through multiple self-improvement iteration, the
performance of the model can be greatly improved.

Self-refinement

RefineFeedback

Use M to get feedback on its own output

Input

Use M to refine its previous output, given its feedback

Model M
1 2

0

Figure 1: Given an input (0⃝), SELF-REFINE starts by generating an output and passing it back to the
same modelM to get feedback (1⃝). The feedback is passed back toM, which refines the previously
generated output (2⃝). Steps (1⃝) and (2⃝) iterate until a stopping condition is met. SELF-REFINE is
instantiated with a language model such as GPT-3.5 and does not involve human assistance.

drafting an email to request a document from a colleague, an individual may initially write a direct
request such as “Send me the data ASAP”. Upon reflection, however, the writer recognizes the
potential impoliteness of the phrasing and revises it to “Hi Ashley, could you please send me the data
at your earliest convenience?". When writing code, a programmer may implement an initial “quick
and dirty” implementation, and then, upon reflection, refactor their code to a solution that is more
efficient and readable. In this paper, we demonstrate that LLMs can provide iterative self-refinement
without additional training, leading to higher-quality outputs on a wide range of tasks.

We present SELF-REFINE: an iterative self-refinement algorithm that alternates between two gener-
ative steps–FEEDBACK and REFINE. These steps work in tandem to generate high-quality outputs.
Given an initial output generated by a model M, we pass it back to the same model M to get
feedback. Then, the feedback is passed back to the same model to refine the previously-generated
draft. This process is repeated either for a specified number of iterations or untilM determines that
no further refinement is necessary. We use few-shot prompting (Brown et al., 2020) to guideM to
both generate feedback and incorporate the feedback into an improved draft. Figure 1 illustrates the
high-level idea, that SELF-REFINE uses the same underlying language model to generate feedback
and refine its outputs.

We evaluate SELF-REFINE on 7 generation tasks that span diverse domains, including natural
language and source-code generation. We show that SELF-REFINE outperforms direct generation
from strong LLMs like GPT-3.5 (text-davinci-003 and gpt-3.5-turbo; OpenAI; Ouyang
et al., 2022) and GPT-4 (OpenAI, 2023) by 5-40% absolute improvement. In code-generation tasks,
SELF-REFINE improves the initial generation by up to absolute 13% when applied to strong code
models such as Codex (code-davinci-002; Chen et al., 2021). We release all of our code, which
is easily extensible to other LLMs. In essence, our results show that even when an LLM cannot
generate an optimal output on its first try, the LLM can often provide useful feedback and improve
its own output accordingly. In turn, SELF-REFINE provides an effective way to obtain better outputs
from a single model without any additional training, via iterative (self-)feedback and refinement.

2 Iterative Refinement with SELF-REFINE

Given an input sequence, SELF-REFINE generates an initial output, provides feedback on the output,
and refines the output according to the feedback. SELF-REFINE iterates between feedback and
refinement until a desired condition is met. SELF-REFINE relies on a suitable language model
and three prompts (for initial generation, feedback, and refinement), and does not require training.
SELF-REFINE is shown in Figure 1 and Algorithm 1. Next, we describe SELF-REFINE in more detail.

Initial generation Given an input x, prompt pgen, and modelM, SELF-REFINE generates an initial
output y0:

y0 =M (pgen∥x) . (1)

2

SELF: iteractive self-improving

Preprint. Work in progress.

LLM with Self-Refine

Meta-Skill

Initial LLM

Self-Evolving LLM

Meta-Skill

Learning

R
e
fin

e
m

e
n

t

R
e
fin

e
m

e
n

t

R
e
fin

e
m

e
n

t

R
e
fin

e
m

e
n

t

1st Self-Evolve

Meta-Skill Learning

2nd Self-Evolve

3rd Self-Evolve

Figure 1: Evolutionary Journey of SELF: An initial LLM progressively evolve to a more advanced
LLM equipped with a self-refinement meta-skill. By continual iterations (1st, 2nd, 3rd) of self-
evolution, the LLM progresses in capability (24.49% to 31.31%) on GSM8K.

2023) in top-tier LLMs such as GPT-4 have revealed emergent meta-skills for self-refinement, sig-
naling a promising future direction for the self-evolution of LLMs. Despite this, current methods for
LLM development typically rely on a single round of instruction fine-tuning (Wei et al., 2021; Zhou
et al., 2023) with meticulously human-crafted datasets and reinforcement learning-based methods
(Ouyang et al., 2022) that rely on an external reward model. These strategies not only demand ex-
tensive resources and ongoing human intervention but also treat LLMs as mere passive repositories
of information. Such limitations hinder the full realization of these models’ innate potential and
their progression towards a truly autonomous, self-sustaining evolutionary state.

In our pursuit, we aim to unveil the potential of LLMs for autonomous self-evolution by introducing
a self-evolving learning framework named “SELF” (Self-Evolution with Language Feedback). Fig.
1 depicts that SELF is crafted to mirror the humans’ self-driven learning process with introspec-
tion and self-refinement. This enables LLMs to experience iterative self-evolution through learning
from data it synthesizes via processes of self-feedback and self-refinement. Additionally, SELF uti-
lizes natural language-based feedback to provide a more versatile and insightful analysis, thereby
facilitating the refinement of its responses. This innovative framework of progressive self-evolution
enables LLMs to improve themselves, thereby reducing the dependence on external reward model
or human intervention for model optimization. Specifically, the learning of SELF start with acquir-
ing essential meta-skills, establishing a solid foundation in self-feedback and self-refinement. These
meta-skills navigate the model through successive iterative self-evolution, applying a cycle of con-
tinuous training with self-curated data to augment its inherent capabilities. The data for evolution
training is collected through responses that the model iteratively self-generates and refines. The
outcome of this process is a model endowed with the ability to continuously refine its capabilities,
utilizing a perpetually expanding repository of self-curated data. This ensures a consistent elevation
in both the volume and quality of data, thereby enhancing the intrinsic abilities of LLMs. During
inference, the acquired meta-skills facilitate LLMs in elevating response quality through response
self-refinement. To conclude, the SELF framework converts the model from being a mere passive
recipient of data to an active artisan of its own evolution. This method not only alleviates the neces-
sity for labor-intensive manual adjustments but also fosters the continuous self-evolution of LLMs,
paving the way for a more autonomous and efficient training paradigm.

Experiments conducted on both mathematical and general domain benchmarks substantiate the ef-
fectiveness of the SELF framework. As depicted in Fig. 1, our experiments unveil several in-
sights. Firstly, by utilizing the self-evolving mechanism, the LLM exhibits consistent enhancement
in its performance through each evolution cycle. Secondly, the implementation of online refinement
consistently elevates the quality of responses, highlighting the model’s innate capability for self-
refinement. Lastly, the integration of meta-skill learning further improves the LLM’s performance,
indicating that the act of learning to refine intrinsically augments the model’s capabilities.

2

16 total: 23

LLM-driven AI agents
A Survey on Large Language Model Based Autonomous Agents. arXiv.2308.11432.

Ø Demographic Information

Ø Personality Information

Ø Social Information

Ø Handcrafting Method

Ø LLM-Generation Method

Ø Dataset Alignment Method

Profile ActionMemory Planning

Ø Task Completion
Ø Communication

Ø Memory Reading
Ø Memory Writing
Ø Memory Reflection

Ø Unified Memory
Ø Hybrid Memory

Ø Languages
Ø Embeddings

Ø Environment Feedback
Ø Human Feedback
Ø Model Feedback

Ø Single-path Reasoning
Ø Multi-path Reasoning
Ø External Planner

Generation Strategy

Profile Contents

Memory Operation

Memory Structure

Memory Formats

Planning w/o Feedback

Planning w/ Feedback

Action Target

Action Production

Action Impact
Ø Tools

Ø Databases
Ø Lists

Ø Self-Knowledge

Ø Exploration

Ø Memory Recollection

Ø Environments
Ø Internal States

Action Space
Ø Plan Following

Ø New Actions

Figure 2: A unified framework for the architecture design of LLM-based autonomous agent.

LLM-generation Method: in this method, agent profiles are automatically generated based on
LLMs. Typically, it begins by indicating the profile generation rules, elucidating the composition and
attributes of the agent profiles within the target population. Then, one can optionally specify several
seed agent profiles to serve as few-shot examples. At last, LLMs are leveraged to generate all the
agent profiles. For example, RecAgent [150] first creates seed profiles for a few number of agents
by manually crafting their backgrounds like age, gender, personal traits, and movie preferences.
Then, it leverages ChatGPT to generate more agent profiles based on the seed information. The
LLM-generation method can save significant time when the number of agents is large, but it may
lack precise control over the generated profiles.

Dataset Alignment Method: in this method, the agent profiles are obtained from real-world datasets.
Typically, one can first organize the information about real humans in the datasets into natural
language prompts, and then leverage it to profile the agents. For instance, in [5], the authors assign
roles to GPT-3 based on the demographic backgrounds (such as race/ethnicity, gender, age, and state
of residence) of participants in the American National Election Studies (ANES). They subsequently
investigate whether GPT-3 can produce similar results to those of real humans. The dataset alignment
method accurately captures the attributes of the real population, thereby making the agent behaviors
more meaningful and reflective of real-world scenarios.
Remark. While most of the previous work leverage the above profile generation strategies indepen-
dently, we argue that combining them may yield additional benefits. For example, in order to predict
social developments via agent simulation, one can leverage real-world datasets to profile a subset of
the agents, thereby accurately reflecting the current social status. Subsequently, roles that do not exist
in the real world but may emerge in the future can be manually assigned to the other agents, enabling
the prediction of future social development. The profile module serves as the foundation for agent
design, exerting significant influence on the agent memorization, planning, and action procedures.

2.1.2 Memory Module

The memory module plays a very important role in the agent architecture design. It stores information
perceived from the environment and leverages the recorded memories to facilitate future actions. The
memory module can help the agent to accumulate experiences, self-evolve, and behave in a more
consistent, reasonable, and effective manner. This section provides a comprehensive overview of the
memory module, focusing on its structures, formats, and operations.

Memory Structures: LLM-based autonomous agents usually incorporate principles and mechanisms
derived from cognitive science research on human memory processes. Human memory follows a
general progression from sensory memory that registers perceptual inputs, to short-term memory that
maintains information transiently, to long-term memory that consolidates information over extended
periods. When designing the agent memory structures, researchers take inspiration from these aspects
of human memory. In specific, short-term memory is analogous to the input information within

4

Difference between AI agents and common AI applications:
▶ Agents are able to perceive the environment and make decisions.
▶ Agents can influence and change the environment through their

behavior.
▶ Agents can perceive the changes of the environments caused by

their own behaviour, which form a close loop.
▶ The learning of the decision-making mechanism of agents usually

involve reinforcement learning.

Differences between LLM-driven agents and traditional AI agents:
▶ The states of LLM Agent are represented not only with vectors, but

also in languages, which is interpretable.
▶ The behavior of LLM agents can be represented as any complex

symbolic operation such as function calls.
▶ The LLM Agent’s decision is supported by a strong LLM.

17 total: 23

Summarization and accumulation of experience: Voyager

Mine Wood Log

Make Crafting Table

Craft Stone Sword

Craft Shield

Make Furnace

Cook Steak

Combat Zombie Mine Wood Log

Make Crafting Table

Combat

Zombie

Mine Diamond

New

Task

Code as
Actions

Refine ProgramEnv Feedback

Execution Errors

Update

Exploration

Progress

Skill

Retrieval

Add New Skill

Automatic Curriculum Iterative Prompting Mechanism Skill Library

Environment Self-Verification

Figure 2: VOYAGER consists of three key components: an automatic curriculum for open-ended
exploration, a skill library for increasingly complex behaviors, and an iterative prompting mechanism
that uses code as action space.

1 Introduction

Building generally capable embodied agents that continuously explore, plan, and develop new skills
in open-ended worlds is a grand challenge for the AI community [1–5]. Classical approaches
employ reinforcement learning (RL) [6, 7] and imitation learning [8–10] that operate on primitive
actions, which could be challenging for systematic exploration [11–15], interpretability [16–18], and
generalization [19–21]. Recent advances in large language model (LLM) based agents harness the
world knowledge encapsulated in pre-trained LLMs to generate consistent action plans or executable
policies [16, 22, 19]. They are applied to embodied tasks like games and robotics [23–27], as well as
NLP tasks without embodiment [28–30]. However, these agents are not lifelong learners that can
progressively acquire, update, accumulate, and transfer knowledge over extended time spans [31, 32].

Let us consider Minecraft as an example. Unlike most other games studied in AI [33, 34, 10],
Minecraft does not impose a predefined end goal or a fixed storyline but rather provides a unique
playground with endless possibilities [23]. Minecraft requires players to explore vast, procedurally
generated 3D terrains and unlock a tech tree using gathered resources. Human players typically start
by learning the basics, such as mining wood and cooking food, before advancing to more complex
tasks like combating monsters and crafting diamond tools. We argue that an effective lifelong learning
agent should have similar capabilities as human players: (1) propose suitable tasks based on its
current skill level and world state, e.g., learn to harvest sand and cactus before iron if it finds itself in
a desert rather than a forest; (2) refine skills based on environmental feedback and commit mastered
skills to memory for future reuse in similar situations (e.g. fighting zombies is similar to fighting
spiders); (3) continually explore the world and seek out new tasks in a self-driven manner.

Towards these goals, we introduce VOYAGER, the first LLM-powered embodied lifelong learning
agent to drive exploration, master a wide range of skills, and make new discoveries continually
without human intervention in Minecraft. VOYAGER is made possible through three key modules
(Fig. 2): 1) an automatic curriculum that maximizes exploration; 2) a skill library for storing
and retrieving complex behaviors; and 3) a new iterative prompting mechanism that generates
executable code for embodied control. We opt to use code as the action space instead of low-level
motor commands because programs can naturally represent temporally extended and compositional
actions [16, 22], which are essential for many long-horizon tasks in Minecraft. VOYAGER interacts
with a blackbox LLM (GPT-4 [35]) through prompting and in-context learning [36–38]. Our approach
bypasses the need for model parameter access and explicit gradient-based training or finetuning.

More specifically, VOYAGER attempts to solve progressively harder tasks proposed by the automatic
curriculum, which takes into account the exploration progress and the agent’s state. The curriculum
is generated by GPT-4 based on the overarching goal of “discovering as many diverse things as
possible”. This approach can be perceived as an in-context form of novelty search [39, 40]. VOYAGER
incrementally builds a skill library by storing the action programs that help solve a task successfully.

2

VOYAGER: An Open-Ended Embodied Agent
with Large Language Models

Guanzhi Wang1 2#, Yuqi Xie3, Yunfan Jiang4∗, Ajay Mandlekar1∗,
Chaowei Xiao1 5, Yuke Zhu1 3, Linxi “Jim” Fan1†#, Anima Anandkumar1 2†

1NVIDIA, 2Caltech, 3UT Austin, 4Stanford, 5UW Madison
∗Equal contribution †Equal advising # Corresponding authors

https://voyager.minedojo.org

Abstract

We introduce VOYAGER, the first LLM-powered embodied lifelong learning agent
in Minecraft that continuously explores the world, acquires diverse skills, and
makes novel discoveries without human intervention. VOYAGER consists of three
key components: 1) an automatic curriculum that maximizes exploration, 2) an
ever-growing skill library of executable code for storing and retrieving complex
behaviors, and 3) a new iterative prompting mechanism that incorporates environ-
ment feedback, execution errors, and self-verification for program improvement.
VOYAGER interacts with GPT-4 via blackbox queries, which bypasses the need for
model parameter fine-tuning. The skills developed by VOYAGER are temporally
extended, interpretable, and compositional, which compounds the agent’s abilities
rapidly and alleviates catastrophic forgetting. Empirically, VOYAGER shows
strong in-context lifelong learning capability and exhibits exceptional proficiency
in playing Minecraft. It obtains 3.3× more unique items, travels 2.3× longer
distances, and unlocks key tech tree milestones up to 15.3× faster than prior SOTA.
VOYAGER is able to utilize the learned skill library in a new Minecraft world to
solve novel tasks from scratch, while other techniques struggle to generalize.

Figure 1: VOYAGER discovers new Minecraft items and skills continually by self-driven exploration,
significantly outperforming the baselines. X-axis denotes the number of prompting iterations.

1
ar

X
iv

:2
30

5.
16

29
1v

2
 [

cs
.A

I]
 1

9
O

ct
 2

02
3

Wang, et al. “Voyager: An Open-Ended Embodied Agent with Large Language Models.” arXiv.2305.16291.

18 total: 23

Emergent social behavior from multi-agent interaction: Smallville

Generative Agents: Interactive Simulacra of Human Behavior
Joon Sung Park
Stanford University

Stanford, USA
joonspk@stanford.edu

Joseph C. O’Brien
Stanford University

Stanford, USA
jobrien3@stanford.edu

Carrie J. Cai
Google Research

Mountain View, CA, USA
cjcai@google.com

Meredith Ringel Morris
Google DeepMind
Seattle, WA, USA

merrie@google.com

Percy Liang
Stanford University

Stanford, USA
pliang@cs.stanford.edu

Michael S. Bernstein
Stanford University

Stanford, USA
msb@cs.stanford.edu

Figure 1: Generative agents are believable simulacra of humanbehavior for interactive applications. In thiswork,we demonstrate
generative agents by populating a sandbox environment, reminiscent of The Sims, with twenty-five agents. Users can observe
and intervene as agents plan their days, share news, form relationships, and coordinate group activities.

ABSTRACT
Believable proxies of human behavior can empower interactive
applications ranging from immersive environments to rehearsal
spaces for interpersonal communication to prototyping tools. In
this paper, we introduce generative agents: computational software
agents that simulate believable human behavior. Generative agents
wake up, cook breakfast, and head to work; artists paint, while

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0132-0/23/10.
https://doi.org/10.1145/3586183.3606763

authors write; they form opinions, notice each other, and initiate
conversations; they remember and reflect on days past as they plan
the next day. To enable generative agents, we describe an architec-
ture that extends a large language model to store a complete record
of the agent’s experiences using natural language, synthesize those
memories over time into higher-level reflections, and retrieve them
dynamically to plan behavior. We instantiate generative agents
to populate an interactive sandbox environment inspired by The
Sims, where end users can interact with a small town of twenty-five
agents using natural language. In an evaluation, these generative
agents produce believable individual and emergent social behav-
iors. For example, starting with only a single user-specified notion
that one agent wants to throw a Valentine’s Day party, the agents
autonomously spread invitations to the party over the next two

ar
X

iv
:2

30
4.

03
44

2v
2

 [
cs

.H
C

]
 6

 A
ug

 2
02

3

Generative Agents UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA

Figure 6: The memory stream comprises a large number of observations that are relevant and irrelevant to the agent’s current
situation. Retrieval identifies a subset of these observations that should be passed to the language model to condition its
response to the situation.

In our context, we focus on three main components that, together,
produce effective results.

Recency assigns a higher score to memory objects that were re-
cently accessed, so that events from a moment ago or this morning
are likely to remain in the agent’s attentional sphere. In our im-
plementation, we treat recency as an exponential decay function
over the number of sandbox game hours since the memory was
last retrieved. Our decay factor is 0.995.

Importance distinguishes mundane from core memories by as-
signing a higher score to memory objects that the agent believes to
be important. For instance, a mundane event, such as eating break-
fast in one’s room, would yield a low importance score, whereas
a breakup with one’s significant other would yield a high score.
There are many possible implementations of an importance score;
we find that directly asking the language model to output an integer
score is effective. The full prompt appears below:

On the scale of 1 to 10, where 1 is purely mundane

(e.g., brushing teeth, making bed) and 10 is

extremely poignant (e.g., a break up, college

acceptance), rate the likely poignancy of the

following piece of memory.

Memory: buying groceries at The Willows Market

and Pharmacy

Rating: <fill in>

This prompt returns an integer value of 2 for “cleaning up the room”
and 8 for “asking your crush out on a date.” The importance score
is generated at the time the memory object is created.

Relevance assigns a higher score to memory objects that are
related to the current situation. What is relevant depends on the
answer to, “Relevant to what?”, so we condition relevance on a

query memory. If the query, for example, is that a student is dis-
cussing what to study for a chemistry test with a classmate, memory
objects about their breakfast should have low relevance, whereas
memory objects about the teacher and schoolwork should have
high relevance. In our implementation, we use the language model
to generate an embedding vector of the text description of each
memory. Then, we calculate relevance as the cosine similarity be-
tween the memory’s embedding vector and the query memory’s
embedding vector.

To calculate the final retrieval score, we normalize the recency,
relevance, and importance scores to the range of [0, 1] using min-
max scaling. The retrieval function scores all memories as aweighted
combination of the three elements: 𝑠𝑐𝑜𝑟𝑒 = 𝛼𝑟𝑒𝑐𝑒𝑛𝑐𝑦 · 𝑟𝑒𝑐𝑒𝑛𝑐𝑦 +
𝛼𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 · 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 +𝛼𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 · 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒 . In our implemen-
tation, all 𝛼s are set to 1. The top-ranked memories that fit within
the language model’s context window are included in the prompt.

4.2 Reflection
Challenge: Generative agents, when equipped with only raw ob-
servational memory, struggle to generalize or make inferences.
Consider a scenario in which Klaus Mueller is asked by the user:
“If you had to choose one person of those you know to spend an
hour with, who would it be?" With access to only observational
memory, the agent simply chooses the person with whom Klaus
has had the most frequent interactions: Wolfgang, his college dorm
neighbor. Unfortunately, Wolfgang and Klaus only ever see each
other in passing, and do not have deep interactions. A more desir-
able response requires that the agent generalize from memories of
Klaus spending hours on a research project to generate a higher-
level reflection that Klaus is passionate about research, and likewise

UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA J.S. Park, J.C. O’Brien, C.J. Cai, M.R. Morris, P. Liang, M.S. Bernstein

Figure 5: Our generative agent architecture. Agents perceive their environment, and all perceptions are saved in a comprehensive
record of the agent’s experiences called the memory stream. Based on their perceptions, the architecture retrieves relevant
memories and uses those retrieved actions to determine an action. These retrieved memories are also used to form longer-term
plans and create higher-level reflections, both of which are entered into the memory stream for future use.

4 GENERATIVE AGENT ARCHITECTURE
Generative agents aim to provide a framework for behavior in an
open world: one that can engage in interactions with other agents
and react to changes in the environment. Generative agents take
their current environment and past experiences as input and gener-
ate behavior as output. Underlying this behavior is a novel agent ar-
chitecture that combines a large language model with mechanisms
for synthesizing and retrieving relevant information to condition
the language model’s output. Without these mechanisms, large
language models can output behavior, but the resulting agents may
not react based on the agent’s past experiences, may not make
important inferences, and may not maintain long-term coherence.
Challenges with long-term planning and coherence remain [19]
even with today’s most performant models such as GPT-4. Because
generative agents produce large streams of events and memories
that must be retained, a core challenge of our architecture is to
ensure that the most relevant pieces of the agent’s memory are
retrieved and synthesized when needed.

At the center of our architecture is the memory stream, a data-
base that maintains a comprehensive record of an agent’s experi-
ence. From the memory stream, records are retrieved as relevant to
plan the agent’s actions and react appropriately to the environment.
Records are recursively synthesized into higher- and higher-level
reflections that guide behavior. Everything in the architecture is
recorded and reasoned over as a natural language description, al-
lowing the architecture to leverage a large language model.

Our current implementation utilizes the gpt3.5-turbo version of
ChatGPT [77]. We expect that the architectural basics of genera-
tive agents—memory, planning, and reflection—will likely remain
the same as language models improve. Newer language models
(e.g., GPT-4) will continue to expand the expressive power and
performance of the prompts that underpin generative agents. As of
writing, however, GPT-4’s API was invitation-only, so our agents
use ChatGPT.

4.1 Memory and Retrieval
Challenge: Creating generative agents that can simulate human
behavior requires reasoning about a set of experiences that is far
larger than what should be described in a prompt, as the full mem-
ory stream can distract the model and does not even currently fit
into the limited context window. Consider the Isabella agent an-
swering the question, “What are you passionate about these days?”
Summarizing all of Isabella’s experiences to fit in the limited con-
text window of the language model produces an uninformative
response, where Isabella discusses topics such as collaborations for
events and projects and cleanliness and organization in a cafe. In-
stead of summarizing, the memory stream described below surfaces
relevant memories, resulting in a more informative and specific
response that mentions Isabella’s passion for making people feel
welcome and included, planning events and creating an atmosphere
that people can enjoy, such as the Valentine’s Day party.

Approach: The memory stream maintains a comprehensive record
of the agent’s experience. It is a list of memory objects, where each
object contains a natural language description, a creation times-
tamp, and a most recent access timestamp. The most basic element
of the memory stream is an observation, which is an event directly
perceived by an agent. Common observations include behaviors
performed by the agent themselves or behaviors that agents per-
ceive being performed by other agents or non-agent objects. For
instance, Isabella Rodriguez, who works at a coffee shop, might
accrue the following observations over time: (1) Isabella Rodriguez
is setting out the pastries, (2) Maria Lopez is studying for a Chem-
istry test while drinking coffee, (3) Isabella Rodriguez and Maria
Lopez are conversing about planning a Valentine’s day party at
Hobbs Cafe, (4) The refrigerator is empty.

Our architecture implements a retrieval function that takes the
agent’s current situation as input and returns a subset of the mem-
ory stream to pass on to the language model. There are many pos-
sible implementations of a retrieval function, depending on what
is important for the agent to consider when deciding how to act.

▶ Introduce time-based passive memory.
▶ Decisions are made by LLMs according to memory, without purposes.
▶ Social behavior emergents among multi-agents.

▶ Potential future development of multi-agent:
▶ Can division of labor and cooperative behavior emergent

among multple agents, rather than relying on pre-specified
human design?

▶ Can ever more powerful intelligent behaviour emergents
through collaborations between multi-agents?

Park, et al. “Generative Agents: Interactive Simulacra of Human Behavior.” arXiv.2304.03442.
19 total: 23

Trends of Large Languge Models: an high-level overview

Trends of technologies for improving LLM built-in abilities

Trends of technologies for improving LLM learned abilities

Challenges, risks and social impacts of LLMs

Summary

Content

Hallucination
▶ The current neural networks are unable to avoid hallucination inherently:

▶ The knowledge of a neural network is stored in the parameters, and the
parameters themselves cannot distinguish between fact and hallucination.

▶ It is also not possible to distinguish between fact and hallucination in texts or
images generated by neural networks.

▶ Larger LLMs, such as GPT-4, can better model the data and help to reduce
hallucination.

▶ Introducing external knowledge, such as RAG, can reduce hallucination.
▶ Humans also have halluciations (children, patients, dreams, literary

creations), and hallucinations are not always bad things.
▶ A possible solution to eliminate halluciation is to introduce a factual

examination module inside the model.
▶ In specific applications, it is acceptible to reduce the halluciation to a low

enough level, rather than completely eliminate the hallucination.

20 total: 23

Superhuman intelligence: the risk of dominating/destroying humanity

▶ AI abilities will exceed most average person and even experts in more and
more professional fields.

▶ AI has a long way to go before it surpasses humans in daily life.
▶ The possibility of AI to dominate or destroy humanity:

▶ AI has no intention of dominating or destroying humanity (having the ability is
not the same as having the intention).

▶ AI could unintentionally destroy humanity: the paperclip thought experiment.
▶ The problem with the paperclip thought experiment (my personal opinion):

▶ Humans will not give up the authorization of resources;
▶ AI does not have a strong will to recover from failure.

21 total: 23

The impact of LLMs to the future of human society

▶ The cost of intelligence and energy will be close to zero.
▶ AI will become an indispensable infrastructure for everyone’s daily life, just like

water, electricity, wireless communication, and the Internet.
▶ AI-driven scientific research (AI4Science) will bring about a scientific

revolution and greatly accelerate the speed of scientific progress.
▶ AI will have a huge impact on the organization of human society:

▶ High-intelligence jobs will continue to exist, but the bar will be raised significantly.
▶ Some low-intelligence and repetitive work jobs will disappear.
▶ Most people will take manual jobs that machines can’t replace or service jobs

with high emotional value.
▶ AI will allow humans to work less and spend more time learning and having fun.
▶ Universal basic income (UBI) is inevitable.

22 total: 23

Trends of Large Languge Models: an high-level overview

Trends of technologies for improving LLM built-in abilities

Trends of technologies for improving LLM learned abilities

Challenges, risks and social impacts of LLMs

Summary

Content

Summary

Trends of Large Languge Models: an high-level overview

Trends of technologies for improving LLM built-in abilities

Trends of technologies for improving LLM learned abilities

Challenges, risks and social impacts of LLMs

Summary

Thank you!

把数字世界带入每个人、每个家庭、
每个组织，构建万物互联的智能世界。
Bring digital to every person, home and organization
for a fully connected, intelligent world.

Copyright©2018 Huawei Technologies Co., Ltd.
All Rights Reserved.

The information in this document may contain
predictive statements including, without limitation,
statements regarding the future financial and
operating results, future product portfolio, new
technology, etc. There are a number of factors that
could cause actual results and developments to
differ materially from those expressed or implied in
the predictive statements. Therefore, such
information is provided for reference purpose only
and constitutes neither an offer nor an acceptance.
Huawei may change the information at any time
without notice.

	Trends of Large Languge Models: an high-level overview
	What are Large Language Models (LLMs)?
	Large Languege Models: an overview
	Emergence and homogenization of foundation models
	Homogenization: Pre-trained LMs vs. LLMs
	Ability emergence in LLMs
	LLM training: the Scaling Law
	LLM abilities: a classification

	Trends of technologies for improving LLM built-in abilities
	Overview of technologies for improving LLM built-in abilities
	Sparse FFNs: support larger models with the same computing power
	RNN-like attentions: support longer context with the same memory size
	Training parallism
	Improvement of training optimizers
	Improvement of inference

	Trends of technologies for improving LLM learned abilities
	Overview of technologies for improving LLM learned abilities
	Elaborated Instruction Data
	Self-critique, self-correcting and self-improving of LLMs
	LLM-driven AI agents
	Summarization and accumulation of experience: Voyager
	Emergent social behavior from multi-agent interaction: Smallville

	Challenges, risks and social impacts of LLMs
	Hallucination
	Superhuman intelligence: the risk of dominating/destroying humanity
	The impact of LLMs to the future of human society

	Summary
	Summary

